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Cross-wire anemometry in high 
intensity turbulence 
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An analysis of the response of an X-probe which takes into account the axial 
sensitivity k, the effect of the w component of velocity and the effective rectifica- 
tion by the hot wire is presented. Owing to rectification points in the measured 
u, v 'phase plane' are confined within a certain sector, thus leading to distortions 
in the measured joint probability density functions. Numerical computations 
show that high turbulence intensities lead to large errors in second-order moments 
measured by cross-wire probes; for instance, the error in the measured correlation 
(over and above that due to k) can be as high as 28% when the turbulence 
intensity is 35 yo. 

1. Introduction 
It is well known that measurements of components of the turbulent stress 

tensor in high intensity turbulent flows like free turbulent jets, mixing layers etc. 
are very difficult and can lead to significant errors. This is usually thought of as 
a consequence of truncating the series expansion of the hot-wire response 

(1.1) 
equation 

where U& is the instantaneous effective cooling velocity, Unomal and Uaxial are the 
components of the velocity vector normal and parallel to the hot wire, respec- 
tively, and k is the axial sensitivity of the hot wire. While Champagne, Sleicher & 
Wehrmann (1967) have clearly demonstrated the dependence of k on the length- 
to-diameter ratio l/d of the hot wire, in addition to determining its value as a 
function of l / d ,  Champagne & Sleicher (1967) have given the corrections (valid for 
small turbulence intensities) to be applied to measurements owing to the influence 
of k. An important source of error, however, is the resultant rectification of the 
velocity signal by the hot wire, the hot wire being sensitive only to the magnitude 
of the effective cooling velocity. Rectification occurs whenever the component of 
velocity normal to the hot wire crosses zero. Although for a hot wire held normal 
to the flow this will obviously happen only during flow reversals, this is not so for 
cross-wires which are inclined to the flow. Since V,rf is always positive, the errors 
due to rectification arise not because of truncation of the series expansion of the 
right-hand side of ( l . l ) ,  but because during signal processing the modulus sign 
implicit on the right-hand side of (1.1) is ignored. Thus (1.1) should really be 
written as .?&f = J{U~ormal+k2U~Kial}~J .  To see this more clearly consider a hot 

uefi = { Uiormal+ k2 UtiaJ', 
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wire normal to the mean flow. Let u, v and w be the three components of the 
instantaneous velocity vector. Then let 

u= U+Uf, v =  V+V', w =  W+W', 
where U ,  V and W are the mean velocities and u', v' and w' are the fluctuations. 
If v = w = 0 and the hot wire is held normal to the u direction, then in general 

Uefi = {(U+uf)2}3 = (U+U ' /  + U+U', 

(Uen- Qeff)' = ( 1  u +u'/ - I u +u'/ 1% + 3. 

This rectification can be observed easily by studying the bounds of the phase 
diagram generated by signals from two orthogonal hot wires (an X-probe). 
Figures 1 (a) ,  ( b )  and (c) (plate 1) show the phase diagrams generated by an 
X-probe at the centre-line, point of maximum shear and approximate half- 
intermittency point in an axisymmetric jet 15 diameters downstream. The 
co-ordinates in these figures are the linearized outputs from two hot wires held 
a t  45" to the mean flow direction. These photographs were obtained by operating 
a d.c. coupled oscilloscope in the storage mode for about 3 min. As can be seen, 
points in the phase plane are bounded by two straight lines. This boundary 
shows that the linearized output voltage for one wire has reached a value 
indicating that the flow is parallel to that wire (putting Unormal = 0 in (1.1) we 
obtain U , r f  = FCUaxial); for the case k: = 0 ,  that voltage being zero, the angle 
between the two straight-line boundaries will be 90". 

Obviously the information lost owing to rectification can never be recovered; 
however, since the square of a rectified signal is identical to the square of the 
signal itself, by using a single wire held a t  different angles and processing the 
squared signals, sufficient information would be obtained so that certain moments 
could be measured. This was partially done by Rodi (1971), though for a different 
reason, namely to avoid the series expansion of the square root. Unfortunately, 
however, he assumed V = 0 in the formulation, which although V is usually very 
small, can, as will be shown later, lead to large errors in the measured correlation 
uv. Consider a hot wire in the u, v plane as shown in figure 2. Let a be the angle 
between the normal (in the u, v plane) to the wire and the u axis. Then the effective 
cooling velocity L h  is given by 

- 

lJ& = [( U +u') cosa + (V +v') sin01]~+ w2 

+ k2[(u' + U )  sin a - ( V + v') cos 011~. (1.2) 

The so-called pitch factor h, which would have resulted in a term h2w2 instead of 
w2 in the above equation, is assumed to be unity. This is because it can be very 
sensitive to the prong and probe configuration, and since the later computations 
involve numerical values one choice is as good as another. It is easy to see that 
an average of (1.2) will result in six unknown moments: U ,  V ,  uf2, d2, w2 and m. 
Thus accurate measurement of these quantities without errors due to rectification 
and truncation will require six choices of 01 and solution of six simultaneous 
equations. 

--- 
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t - 
Hot wire U+u' 

FIGURE 2. Definition sketch of hot wire in u, v plane. 

Most of the u)21' correlation measurements published in the literature have been 
made with an X-probe in the conventional way. Wygnanski & Fiedler (1969), 
who made measurements in an axisymmetric jet, did not apply any corrections 
resulting from higher-order terms. Although Heskestad (1965) did correct his 
measurements by including higher-order terms, these involved assumptions 
about the behaviour of higher-order moments. More important, however, these 
corrections did not take rectification into account. Recently Eckelmann (1974) 
has made measurements in the wall region of a turbulent channel flow, where 
the turbulent intensity can be as high as 34 %. He also neglected the effects of 
rectification and higher-order terms. Thus there is motivation for finding the 
order-of-magnitude of errors in such measurements due to the combined effects of 
rectification and truncation. There is another important reason. Probability- 
density-function (p.d.f.) measurements require instantaneous signals directly 
proportional to the variables of interest. Although it is theoretically possible to 
get, say, simultaneous instantaneous signals for u andvwithout the effects of recti- 
ficationand distortion due to axial cooling and the presence of the w component, 
this is not practical. It would require a special probe with seven hot wires, all 
mounted at  different angles. Treating U, u', v = V + v' and w as effective vari- 
ables, (1.2) results in a linear equation in the following seven unknowns: U2,  d2, 
u'U, 82, vU, vu' and w2; so u and v could in principle be obtained exactly using 
a seven-wire probe. The prong and inter-wire interferenoe would, of course, be 
overwhelming in such a case. Thus the only recourse for measurement of the 
joint p.d.f. of u and v or the marginal p.d.f. of v is a conventional X-probe. 
It is therefore important to see how the joint p.d.f. surface in the u, v plane is 
distorted owing to rectification, the effects of axial cooling and w, so that care 
may be taken in interpreting the p.d.f. data. 

50-2 
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I 

FIGURE 3. Bounds in the ‘ phase diagram’ for signals from two orthogonal hot wires. 

2. Analysis 
2.1. The equations for bounds in the ‘phase plane’ of a n  X-probe 

It will be assumed throughout that linearized hot-wire anemometers are being 
used; then there is a linear relationship between the linearizer voltage and the 
effective cooling velocity. 

Consider an X-probe with the two wires in the x, y plane and perpendicular to 
each other. Choose the co-ordinate axes x and y along wires 1 and 2, respectively, 
the z axis then being normal to the x, y plane. Let Q,, QV and Q, be the components 
of the instantaneous velocity vector along the x, y and z axes. Then the effective 
cooling velocities ?Jeff( 1) and U&2) for the two wires are given by 

U&(l) = Qi + Qt + @Q:, 
Um( 2 1 - Q E + Q t + k i Q i .  - 

U&( 1) = k2, U&(2) + (1 -k:) (Qt + I c ~ Q ; )  + (1 -g)Q$ 
U&(Z) = k2, U&( 1 )  + (1  - k2,) (Qt + k2,Qz) + (1 -kl) Qz. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

U e f f ( 1 )  2 k,Ueff(2), Gff(2) 2 k2Gff(1). ( 2 . 5 )  

Gn(l), Ueff(2) 2 0. (2.6) 

Equations (2.1) and (2.2) can be rewritten as 

Since k,, k, < 1, (2.3) and (2.4) imply that 

From (2.1) and (2.2), we have 

The condition (2.6) restricts points in the Ueff(l), Ueff(2) phase plane to the first 
quadrant, whereas (2.5) restricts them to the sector shown in figure 3. The 
included angle 8 of the sector is then given by 

(2.7) 

which is equal to &r when k, = k, = 0. Henceforth, for simplicity it will be 
assumed that k, = k, = k. 

0 = !p - (tan-, k, + tan-l k2), 
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The average value of 8 = 72" was determined from several photographs similar 
to those in figure 1. This corresponds to k = 0.16 for our hot wires. This agrees 
very well with the estimated value of 0.15 0.04 given by Champagne et al. (1967) 
for our probe (l /d = 300). However, it should be noted that the k thus found need 
not necessarily be the same as that determined from the results of Champagne 
et al. Indeed, from (2.1)-(2.5) it is clear that a point in the phase diagram lies on 
the bound only when the instantaneous velocity vector is along one of the hot 
wires, which corresponds to an instantaneous yaw angle a = 90". Consideriiig k 
to be a function of a, it  is clear that the k used in (2.5) and (2.7) corresponds to 
a = &T. Although Champagne et al. have found no variation of k for 
- 60" < a < 60", it obviously does not follow that it is a oonstant outside this 
domain as well. Our preliminary rough measurements indicate that k(90") and, 
say, ,7445") can be very different. For two wires with different ratios l/d (100 and 
700), while the ratio of the k's for a = 20" was found to be 2 it was almost unity 
for a = 90". Furthermore, k(90") for the above two wires was approximately the 
same as it was for l/d = 300. Thus it seems that k(90") is insensitive to lid; so one 
should not be surprised if the experimentally determined 0 does not correspond to 
the k estimated from the results of Champagne et al. If k( 90") = k(45"), which our 
results indicate to be true for wires with l /d  in the neighbourhood of 300, k can 
be treated as a constant. 

2.2. The evaluation of the 'measured' joint p.d.  f. and related moments 

The method of analysis involves assuming a certain joint p.d.f. for the three 
random variables u, v and w and finding the transformed joint p.d.f. of u* and v*, 
where u* and v* are the instantaneous velocities (corresponding to u and v, 
respectively) measured by the X-probe. 

For a = 45", we have from (1.2) 

U&(a = 45") = &rr( 1) = [(u + ~ ) 2 +  2w2 + k2(u - v)2]*/24, 

LLierf(a = - 45") = Ueff(2) = [(u - v ) ~  + 2 ~ 2  + k2(u + ~)']4/23. 

The linearizer voltages E, and E2 will then be directly proportional to U&( 1) and 

E2 = sz[ (u  - v ) ~ +  2 ~ 2  + k2(u + ~ ) ~ ] & / 2 ) .  2491 
Assuming that the X-probe is calibrated in a laminar flow (u' = v' = w' = 0 )  in 
the u direction (u = U ,  V = W = 0 ) ,  as is usually the case, we have during 
calibration 

Ueff(2). Thus 
El = SJ(U + v)'+ 2 ~ 2 +  k'(U - V )  ] / 

(2.8) 

Ei = si U(1+  k2)4/21 (i = 1,2) .  

So the slope of the calibration curve of the linearizer voltage us. the component 
of velocity normal to the hot wire is s( 1 + k2)d-. Then 

U,*,(i) = Ei/(si( 1 + k2) i }  (i = 1,2), (2 .9 )  

where the * denotes the velocity inferred by the operator. Henceforth the super- 
script * will denote the value of a variable measured by the hot-wire anemometer 
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used in the conventional manner [neglecting rectification, k and higher-order 
terms in the series expansion of (2.8)]. This conventional technique, in fact, 
amounts to neglecting w and assuming UZff to be equal to the velocity component 
normal to the hot wire. Neglecting k, W and second-order terms and assuming 
V Q U ,  it  is easy to show that [ ( U + V ) ~ + ~ W ' ~ ] )  N u + v .  From (2.8) and (2.9) we 
then have 

2 W 3 1 )  = u*+v* = [(u+v)2+2w2+k2(u-v) 3 4 / ( l + k ? t , ]  
(2.10) 

2tUZff(2) = u*-v* = [(u-v)2+2W2+k2(u$v)2]t/(l  +k2)4. 

These equations then give us the transformation from the real (u, v, w) space to 
the measured (u*, v*) plane. 

Given P(u, v, w), the joint p.d.f. of the three velocity components, the problem 
is to find the joint p.d.f. p(u*, v*). Consider the transformation 

1 x = u + v ,  y = u - v ,  z = w ,  

x* = u*+v*, y* = u*-v*, z* = 2. 
(2.11) 

The absolute value of the Jacobian of the transformation being 2, the joint p.d.f. 
f ( x ,  y ,  z )  is given by 

and (2.10) become 
f ( 5 7  Y, 2) = SF[ii(x + Y), t ( x  - Y)7 21, 

x* = (x2+ 2z2+ k2y2)*/( 1 + k2)t7 

y* = ( 9 2  + 2 9  + kZX2)4/( 1 + k2)k 

(2.12) 

(2.13) 1 
The relations (2.5) then become 

x* 2 ky*, y*  2 kx*. 

For the transformation ( x ,  y, z )  -+ (x*, y*, z )  given by (2.13) the Jacobian J is 
given by 

For a given point (x*, y*, z ) ,  (2.13) have four roots (x i ,  yi, z )  (i = 1-4). The joint 
p.d.f. P ( x * ,  y * ,  z )  is then given by 

J = xy(  1 - k2)/{x*y*( 1 + P)}. 

and 

* f ( x i , Y i , z )  
i = l  141 q x * ,  Y*, z )  = x 

0 0  

g(x*, y*) = [ + m P ( x * ,  y*, z )  dz = [ P ( x * ,  y*, z )  dz, 

(2.14) 

(2.15) 

where wo is a positive number such that for a given (x*, y * )  equations (2.13) have 
roots only in the domain - oo < z < wo. Obviously, if for a given point (x*, y * ,  z) 
equations (2.13) have no roots, P ( x * ,  y*, z )  = 0. To find wo rewrite (2.13) as 

( 1  - V ) x 2  + 2( 1 - k2)22 = (1  + k2) (x*2- k2y*2), 

( 1 - k4) y2 + 2( 1 - k2) 22 = ( 1 + k2) (y*2 - k2X*2), 

w i  = min {( 1 + k2) (x*2- k 2 ~ * ~ ) / [ 2 (  1 - k2)] ,  (1 + k2) (y*2- k2x*2 )/[2(1 - k2)1}. 

which represent two orthogonal elliptic cylinders; wo is then clearly given by 
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Transforming back to (u*, v*) gives p(u*,  v*). Since u* = &(z* + y*)  and 
v* = i(z* - y*) the Jacobian is - 4. Thus 

p(u*,  v*) = 2g(u* +v*, U* - v*). (2.16) 

So, given F ( u ,  v ,  w ) ,  (2.12)-(2.16) yield p(u*,  v*). The various 'measured' 
moments and the marginal densities can then be calculated as 

p,(u*) = f +wp(U*, v*) dv*, p,(v*) = f +mp(U*, v*) du*, 
-W --m 

(u* - U*)"(V* - V*)" = // +- (u* - U*)" (v* - V*)np(u*,  v*) du* dv*. 
-m 

2.3. Computations 

The computations were performed for the common case in which u'w' = v'w' = 0; 
as is found, for instance, in two-dimensional and axisymmetric flows. Since W is 
zero and V is usually very small in such flows, both were chosen to be zero. For 
simplicity in the computations, it was also assumed that u, v and w were jointly 
normal. Thus 

- -  

where au, a, and uw are the standard deviations of u, v and w respectively and 
p is the correlation coefficient of u and v [ p  = zc"/(a;a,)]. 

An effectivet grid size of 80 x 160 was chosen in the u*, v* plane for computa- 
tions; a grid twice as coarse gave results differing by less than 1 yo. Because 
P(u, w, w) was an exponential function, the integration in (2.15) was very time 
consuming. With the present grid size the transformation F(u ,  v ,  w) +p(u*, w*) 
took about 25 min of CPU time on an IBM 370. 

To calculate various integrals Simpson's rule was used. The volume under 
p(u* ,  w*) did not differ from unity by more than 0.005 in any run; it was however 
normalized to unity after the computations. 

The conventional 'measured' correlation between u' and w 1  is u*'v*', where 
u* = U* + u*' and v* = V* + v*'. It can be corrected to some extent. Squaring 
and subtracting equations (2.10) we have 

(U* +u*') (V*  +v*') (1  + k2) = (U+u') (V+v ' )  (1 -P), 
taking the average of which gives 

m= u*v*(1 +k2)/(1-k2)- UV+u*'v*'(1+k2)/(1-k2). (2.17) 

Thus if the real mean transverse component T' is zero, which will be the case at 
the centre-line of an axisymmetric flow, u 7  can be measured exactly using (2.17). 

7 Taking advantage of the fact that the points in the u*, v* plane are bounded within 
a sector of included angle 0, the same information could be stored in an 80 x 80 matrix. 
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However, that is not always the case. Applying the corrections for k suggested 
by Champagne & Sleicher (1967), the corrected value of the correlation is equal to 
the last term in (2.17). Thus the error in the conventional value of uIz)i is 

- u* V*( 1 + k2)/( 1 - k2) + u v. (2.18) 

Therefore, if V were neglected in the original formulation, as was done by Rodi 
(1971), the error term would still be U V ,  which is at least of the same order as 
(2.18). Since U and V are not known, U* and V* are the best estimates for them. 
Thus the corrected correlation is 

- 
(U’v‘)c = 2k2U* V*/(  1 - k2) + u*’v*‘( 1 + k2)/( 1 - k2). (2.19) 

3. Results and discussion 
Along the bounds x* = ky* and y* = kx* in the x*, y* phase plane, the proba- 

bility density vanishes because wo, and hence the integral (2.15), is zero. An 
examination of the equiprobability contours in figures 4 ( c )  and (d) shows that 
the probability density is quite small for points close t o  the bounds. This is the 
reason why the bounds in figure 1 are not sharp, thus requiring several photo- 
graphs to determine 0 as mentioned in $2.1. 

Because F(u, v, w) has been assumed joint normal, the actual isoprobability 
contours in the u, v plane are a family of ellipses. Figure 4(a)  shows that for 
vu/U = 0.2 the measured isoprobability contours show very little distortion. 
Superposition of the actual isoprobability contours for this case revealed only 
a small translation (to the right) and only a little compression. For higher 
intensities of turbulence, however, as can be seen in figures 4(b ) - (d ) ,  the dis- 
tortion is quite apparent. (Notice the sharp edge along v* = 0.) The ‘bounds’ as 
defined in figure 3, when mapped into the u*, v* plane, become two vertical (i.e. 
normal to the u*, v* plane) planes intersecting a t  the origin and symmetrically 
placed about the u* axis at angles of k (am- tan-lk). Thus when the turbulence 
intensity is increased the joint p.d.f. surface is squeezed and displaced to the 
right owing to the constraints imposed by the two aforementioned planes. This, 
however, is not the only reason for distortion since the sensitivity to the w com- 
ponent of velocity plays an equally important role. For low turbulence 
intensities, as can be seen from figure 5, the effect of the bounds is felt only by 
the tails of the p.d.f. 

In figures 6 (a )  and (b)  the measured marginal densities of u* and v* (for the 
case atJU = 0-5 )  are compared with the actual ones, which are normal. Their 
skewness and flatness factors are plotted in figure 7 as functions of a J U .  It may 
be noted that the measured skewness of u* and v* is always positive? rather than 
having the real value of zero. Thus the distortions tend to increase (algebraically) 
the skewness. Consequently, an observed (measured) negative skewness will be 
a real feature of the flow being investigated. 

t If p is negative, the skewness of v* is also negative. This becomes clear on noting that 
the joint p.d.f. surface F(u, v, w) remains the same for this case (provided that V = 0) if the 
v axis is rotated through 77 rad. 
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Further results of the computations are given in table 1 and figure 8. Since the 
measured correlation u*'v*' was corrected to (UT)~ using (2.19) (which inoludes 
the correction due to the sensitivity k described by Champagne & Sleicher 1967), 
to first order the error in it should be insensitive to k. Furthermore, according to 
Champagne Q Sleicher (1967) there is no error in the measured value of u,, (for 
small turbulence intensities) due to the effect of k. This agrees with the results in 
table 1, which show that the errors in r,,* and ( U ' V ' ) ~  are not very sensitive to k. 
Also, the difference between the errors in uv* for the two cases k = 0 and 0.15 
agrees fairly well with the correction given by Champagne & Sleicher. It should 
now be emphasized that for (UIO'), and p*, which is equal to ( U ' W ' ) ~ / ( ~ ~ .  crv*), the 
errors given in various tables and figures are over and above the errors described 
by Champagne & Sleicher. Table 1 also shows that the errors in various moments 
are not very sensitive to the correlation coefficient p. A few computations done 
forp = 0.9 and 0-1 support this contention. For turbulence intensities below 20 % 
the errors are reasonably small but above 30 % they can be large, especially for 
( U ' V ' ) ~ .  As a rule, the mean velocity is always overestimated and all the second- 
order moments are underestimated. Consequently, any second-order moment 
non-dimensionalized with the local mean velocity will show an even greater error. 
The error in rv, is almost twice that for ru.. Because both c,,* and cv* are under- 
estimated, the error in p* is less than that for (uIzll)c. 

To find out the relative importance of rectification and the w component of 
velocity, computations were carried out for the case of pure rectification 

- 

- 
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FIGURE 6. Marginal p.d.f. of (a) u and u* and ( b )  v and v* for k = 0.15, u,/U = 0.5, uv = ulu 
= 0.8uu, p = 0.3, U = 1, V = 0. -, the actual p.d.f.; a, the measured p.d.f. Negative 
portion of the actual p.d.f. not shown. 
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FIGURE 71 Skewness ( U * ' ~ / ( U * ' ~ ) +  for u*) and flatness factors ( U * ' ~ / ( U * ' ~ ) *  for u*) as functions 
of turbulence intensity. k = 0.15, p = 0.3, uv = u, = 0*8uu, V = 0 . 0 . 0 ,  flatness factor of v*; 
A, skewness of v*; n, flatness factor of u*; 0, skewness of u*. Skewness and flatness factors 
for u (anq also for w) are zero and 3.0, respectively. 

FIGURE 8. Errors aa functions of turbulence intensity. k = 0.15, p = 0.3, 0; = u, = 0 . 8 ~ " .  
o,$ = (21i"),/U*2; 0 ,  Q = (x)c; A ,  Q = u,.j/U*; 0,fi = a,.,/U*; 0 3  $ = VV*; El,$ = P * ;  
h, $5 = uu..; +, Q = u*. 

( I c  = W 7 a, = 0) .  The results, together with some of those from table 1, are shown 
in table 2, As expected, for low turbulence intensities the errors due to rectifica- 
tion are small; for higher intensities, however, they become comparable to  those 
due to the w component. The errors in ( U ' V ' ) ~ / U * ~  due to these two causes become 
almost i&e same for gJU N 0.4. Thus the importance of rectification is quite 
clear, and it should be noted at this point that the errors due to these two effects 
are of the same sign and augment each other. 

Because rectification will occur earlier with an inclined wire compared with 
a single wire held normal to  the mean flow, the error in au, as measured by a single 
wire should be less. This is indeed so, a5 can be seen from the results shown in 
table 3 for the case k = 0. 

- 
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yo error 
in U* 
A 

0.2 2.6 0-0 
0.3 6.3 0.2 
0.4 12-0 1.2 
0.5 19.5 3.6 

u,/u 1 2 

yo error 
in uu.lU* - 
1 2 

-3.8 -0.1 
-9.5 -1.5 

-17.6 -6.1 
-26.1 -12.9 

yo error 
in u,./U* 
A 

1 2 

-5-4 -0.0 
-12.9 -1.4 
-22.6 -5.6 
-32.3 -11.8 

yo error 
in (u'v')JU** - 

1 2 

-11.4 -0.3 
-29.4 -8.0 
- 49.4 - 25.4 
-64-2 -42-1 

yo error 
in p* 
A 
1 2 

-2.7 -0.2 
-10.4 -5.3 
-20.6 - 15.8 
-28.5 -24.6 

TABLE 2. Relative importance of rectification and the w component of velocity. Case 1: 
k = 0, u, = uw = O - ~ U , ,  errors due to combined effects of rectification and sensitivity to 
w component. Case 2: pure rectification, k = W = uw = 0, uW = 0*8u,,,, p = 0-3. 

yo error yo error % error 
flUlU in U* in u,./U* in u,. 
0- 1 0-32 - 0.56 - 0.24 
0-2 1.3 - 2.2 - 0.95 
0.3 3.0 - 5.3 - 2.4 
0-4 5.7 - 10.3 -5.1 
0.5 9.6 - 16.8 - 8.8 

TABLE 3. Errors in measurements with a single wire in the u, v plane held normal t o  the 
u direction. W = 0, u'w' = 0, uw = 0.8uu, k = 0. 

- 

It should be remembered that the above errors were calculated assuming an 
initial joint normal p.d.f. in u, v, w space and the actual errors in measurement 
would depend upon the p.d.f. in the flow under investigation. If the actual joint 
p.d.f. in the flow were skewed in the proper direction, it is possible that the com- 
puted errors (for the same V J U )  could be less. Therefore, to estimate the errors 
in the intermittent region of the flow a weighted (with the intermittency factor) 
sum of the turbulence intensities in the turbulent and non-turbulent regions 
should be used. Since the inverse transformation p(u*,  v*) +P(u, w, w) is multi- 
valued, it is not possible to find the actual p.d.f. and moments given the measured 
ones. Nevertheless, the analysis provides an estimate of the errors involved. 

4. Concluding remarks 
In high intensity turbulent flows, the axial sensitivity k, the sensitivity to the 

w component of velocity and rectification are the three sources of errors in con- 
ventional measurements with cross-wires. Champagne & Sleicher ( 1967) have 
demonstrated that the error in second-order moments due to k is negative. It has 
been shown here that the errors due to the other two causes (independently) are 
of the same sign. The sensitivity to the w component of velocity and rectification 
severely distort the joint p.d.f. surface (in the u*, w* plane), which is confined 
within a certain sector. Thus care is needed in interpreting the p.d.f. data 
measured in high intensity turbulent Slows. For turbulence intensities greater 
than 30 %, an X-probe can lead to results with significantly large errors, the error 
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in (m), being 28 % (over and above the error due to the influence of k given by 
Champagne & Sleicher) when the turbulence intensity is 35 yo. 
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Ylrrte 1 

FIc+liim 1 .  Phase diitgrimis for litiearizctl sipiials from t \ v o  ortliopoiial ]tot wires ( p l t ~ r c d  nt 
i. 45‘’ t,o tlie longitndinal dircctioii) i i i  mi asisyinmctric t>iirbulent jet of air 15 diainrtc:rs 
tlowristwarn. (a) Approsimatoly nt tlre ceritro-line of t l ic jot;  cr,,./cr* = 0.21. a,,./CT* = 0.17, 
p” = -0.08. (6) Poiiit of masirnuin slirar r / r$  = 0 . 7 3 ;  a,,./U* = 0.32, al,,/U* = 0.22. 
p* = 0.34. (c) Iiitcrmit.t,ciicg factor z 0.6; cr,,./U*-= 0.59, cL../CJ* = 0.29. / I *  = 0.29. 
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